Altered phosphodiesterase 3-mediated cAMP hydrolysis contributes to a hypermotile phenotype in obese JCR:LA-cp rat aortic vascular smooth muscle cells: implications for diabetes-associated cardiovascular disease.
نویسندگان
چکیده
Cardiovascular diseases represent a significant cause of morbidity and mortality in diabetes. Of the many animal models used in the study of non-insulin-dependent (type 2) diabetes, the JCR:LA-cp rat is unique in that it develops insulin resistance in the presence of obesity and manifests both peripheral and coronary vasculopathies. In this animal model, arterial vascular smooth muscle cells (VSMCs) from homozygous obese (cp/cp) rats, but not from age-matched healthy (+/+ or + /cp, collectively defined +/?) littermates, display an " activated" phenotype in vitro and in vivo and have an elevated level of cAMP phosphodiesterase (PDE) activity. In this report, we confirm that cp/cp rat aortic VSMCs have an elevated level of PDE3 activity and show that only particulate PDE3 (PDE3B) activity is elevated. In marked contrast to results obtained in + /? VSMCs, simultaneous activation of adenylyl cyclase and inhibition of PDE3 activity in cp/cp VSMCs synergistically increased cAMP. Although PDE3 inhibition did not potentiate the antimigratory effects of forskolin on +/? VSMCs, PDE3 inhibition did markedly potentiate the forskolin-induced inhibition of migration of cp/cp-derived VSMCs. Although PDE3 activity was elevated in cp/cp rat aortic VSMCs, levels of expression of cytosolic PDE3 (PDE3A) and PDE3B in +/? and cp/cp VSMCs, as well as activation of these enzymes following activation of the cAMP-protein kinase A signaling cascade, were not different. Our data are consistent with an increased role for PDE3 in regulating cAMP-dependent signaling in cp/cp VSMCs and identify PDE3 as a cellular activity potentially responsible for the phenotype of cp/cp VSMCs.
منابع مشابه
Erratum to: "Vascular dysfunction and myocardial contractility in the JCR:LA-corpulent rat".
OBJECTIVE The JCR:LA-corpulent rat is a unique animal model of human vascular disease that exhibits a profound insulin resistance, vasculopathy, and cardiovascular dysfunction. We tested the hypothesis that the defects affect endothelial and smooth muscle function of the coronary microvasculature as well as cardiac contractility. Coronary, myocardial and aortic function were assessed in obese (...
متن کاملDual expression and differential regulation of phosphodiesterase 3A and phosphodiesterase 3B in human vascular smooth muscle: implications for phosphodiesterase 3 inhibition in human cardiovascular tissues.
Cyclic nucleotide phosphodiesterases (PDEs) are a superfamily of enzymes whose physiological role is the attenuation of the signaling mediated by the ubiquitous second messengers cAMP and cGMP. Given the myriad of physiological processes regulated by cAMP and cGMP, PDEs have long been studied as potential therapeutic targets. Although phosphodiesterase 3 (PDE3) activity is abundant in human car...
متن کاملDipyridamole suppresses high glucose-induced osteopontin secretion and mRNA expression in rat aortic smooth muscle cells.
BACKGROUND Diabetic patients are frequently afflicted with medial artery calcification, a predictor of cardiovascular mortality. Diabetes induced the expression of osteopontin in arterial vasculature, which is an indicator of disease progression in artery calcification and vascular stiffness. Signal transduction and strategies that suppress high glucose-induced osteopontin expression in arteria...
متن کاملMR molecular imaging of aortic angiogenesis.
OBJECTIVES The objectives of this study were to use magnetic resonance (MR) molecular imaging to 1) characterize the aortic neovascular development in a rat model of atherosclerosis and 2) monitor the effects of an appetite suppressant on vascular angiogenesis progression. BACKGROUND The James C. Russell:LA corpulent rat strain (JCR:LA-cp) is a model of metabolic syndrome characterized by obe...
متن کاملReduced phosphodiesterase 3 activity and phosphodiesterase 3A level in synthetic vascular smooth muscle cells: implications for use of phosphodiesterase 3 inhibitors in cardiovascular tissues.
Vascular smooth muscle cells (VSMC) in situ function to control contraction and are said to express a contractile phenotype. However, during development or in response to vascular damage, VSMC proliferate and express a more synthetic phenotype. A survey of literature values for contractile and synthetic VSMC phosphodiesterase (PDE) 3 and PDE4 activities identified a marked difference in the PDE...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Diabetes
دوره 51 4 شماره
صفحات -
تاریخ انتشار 2002